Search results for " Optical microscopy"

showing 5 items of 5 documents

Polychrome wood sculpture depicting The Madonna del Soccorso or della Mazza from the Archdiocese of Palermo: an integrated analytical approach for th…

2018

In this study the Madonna del Soccorsoo della Mazza wooden sculpture has been analysed by an interdisciplinary and integrated approach. The polychrome sculpture, dating back to the 18thcentury, comes from the church of the Madonna del Soccorso or della Mazza (1604) situated in Via Maqueda, in Palermo and it was placed on the main recess of the altar. All steps of the conservation project, from the preliminary study to the choice of materials and the restoration procedures have been accompanied and supported by diagnostic and scientific analysis. In order to evaluate the state of conservation of the sculpture and the technique employed to construct the support, computer tomography study was …

SEM-EDSintegrated analytical approachwooden sculpture SEM-EDS XRF spectroscopy Optical microscopy integrated analytical approachwood sculpture SEM-EDAX XRFOptical microscopywooden sculptureXRF spectroscopy
researchProduct

Surface plasmon polaritons on metal cylinders with dielectric core

2001

International audience; Metal-cladded dielectric cylinders with submicron diameters may serve to model coated tips used in nearfield scanning optical microscopy. The signal measured may be greatly influenced by resonance effects due to eigenmodes of the probe. Especially, using a photon scanning tunneling microscope setup, gold-coated tips have been found to detect a signal proportional to the magnetic field distributions [E. Devaux et al.. Phys. Rev. B 62, 10 504 (2000)]. This effect is attributed to cylindrical surface plasmons. We present here fully retarded calculations of the dispersion and field patterns of the nonradiative plasmon modes in cylindrical geometry. We study the effect of…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceNanophotonicsPhysics::Optics02 engineering and technologyDielectric01 natural sciencesMolecular physicsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesCylinderSurface plasmon resonance010306 general physics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Plasmon[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industrySurface plasmonMAGNETIC-FIELD021001 nanoscience & nanotechnologySurface plasmon polariton[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]FIELD OPTICAL MICROSCOPY0210 nano-technologybusinessLocalized surface plasmonPhysical Review B
researchProduct

Ceramic raw materials: how to recognize them and locate the supply basins—mineralogy, petrography

2020

This tutorial paper is focused on the mineralogical-petrographic characterization of clayey raw materials with the purpose of sourcing supply basins and answering questions about the provenance of the corresponding archaeological ceramic artefacts. The first part gives general indications of how to profitably study archaeological ceramic thin sections through the polarizing microscope. Brief notes are provided on the theoretical basis of optical microscopy. A scheme is then provided for the petrographic description of ceramic samples, concerning the textural and compositional characteristics of aplastic inclusions and groundmass. Suggestions are also given for identifying any minero-petrogr…

010506 paleontologyArcheologyProvenance060102 archaeologyArchaeoceramics Clays analysis Polarizing optical microscopy Raw materials for ceramic production Thin section mineralogy and petrographyPlan (archaeology)06 humanities and the artsRaw materialField survey01 natural sciencesCharacterization (materials science)PetrographyMining engineeringAnthropologyvisual_artvisual_art.visual_art_medium0601 history and archaeologyCeramicGeology0105 earth and related environmental sciencesArchaeological and Anthropological Sciences
researchProduct

Visualization of Keratin with Diffuse Reflectance and Autofluorescence Imaging and Nonlinear Optical Microscopy in a Rare Keratinopathic Ichthyosis.

2021

Keratins are one of the main fluorophores of the skin. Keratinization disorders can lead to alterations in the optical properties of the skin. We set out to investigate a rare form of keratinopathic ichthyosis caused by KRT1 mutation with two different optical imaging methods. We used a newly developed light emitting diode (LED) based device to analyze autofluorescence signal at 405 nm excitation and diffuse reflectance at 526 nm in vivo. Mean autofluorescence intensity of the hyperkeratotic palmar skin was markedly higher in comparison to the healthy control (162.35 vs. 51.14). To further assess the skin status, we examined samples from affected skin areas ex vivo by nonlinear optical micr…

MaleNonlinear Optical MicroscopyHyperkeratosisautofluorescencelcsh:Chemical technologyBiochemistryAnalytical Chemistry030207 dermatology & venereal diseases03 medical and health sciences0302 clinical medicineIn vivoKeratinmedicineHumanslcsh:TP1-1185Electrical and Electronic EngineeringInstrumentationkeratinSkinchemistry.chemical_classificationHyperkeratosis Epidermolyticintegumentary systemhyperkeratosisChemistryCommunicationOptical ImagingLEDnonlinear microscopyepidermolytic ichthyosismedicine.diseasediffuse reflectanceFluorescenceNonlinear optical microscopyAtomic and Molecular Physics and OpticsAutofluorescencemedicine.anatomical_structure030220 oncology & carcinogenesisChild Preschoolmultiphoton microscopyhistopathologyKeratinsKRT1EpidermisDiffuse reflectionBiomedical engineeringSensors (Basel, Switzerland)
researchProduct

Near-field scanning optical microscopy to study nanometric structural details of LiNbO3 Zn-diffused channel waveguides

2008

A near-field scanning optical microscope (NSOM) is used to perform structural and optical characterization of the surface layer after Zn diffusion in a channel waveguide fabricated on lithium niobate. A theoretical approach has been developed in order to extract refractive index contrast from NSOM optical transmission measurements (illumination configuration). As a result, different solid phases present on the sample surface can be identified, such as ZnO and ZnNb2O6. They appear like submicrometric crystallites aligned along the domain wall direction, whose origin can be ascribed to some strain relaxation mechanism during the annealing process after Zn diffusion. Jose.Canet-Ferrer@uv.es

Materials scienceLithium niobateRefractive indexGeneral Physics and AstronomyWaveguide (optics)law.inventionAnnealingchemistry.chemical_compoundAnnealing ; Crystallites ; Lithium compounds ; Nanostructured materials ; Near-field scanning optical microscopy ; Optical waveguides ; Refractive index ; StoichiometryOpticsOptical microscopelaw:FÍSICA [UNESCO]Refractive index contrastSurface layerNear-field scanning optical microscopyÓpticabusiness.industryUNESCO::FÍSICACrystallitesFísicaLithium compoundsNanostructured materialsStoichiometryOptical waveguideschemistryNear-field scanning optical microscopeCrystallitebusinessRefractive index
researchProduct